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Abstract

A facile reductive ring opening of C-aryl pseudoglycals is reported for the first time. The combination of titanium tetrachloride (Lewis
acid) and triethylsilane (reducing agent) at �78 �C in dichloromethane is a mild and efficient reagent system for this transformation. The
reagent system was successfully tested on various C-aryl pseudoglycal substrates to yield the corresponding ring opened products
containing two asymmetric hydroxyls and a cis-double bond.
� 2007 Elsevier Ltd. All rights reserved.
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C-Aryl glycosides are valuable scaffolds due to their
presence in natural products with important medicinal
and therapeutic properties.1,2 Furthermore, these com-
pounds have great importance in synthetic organic chemis-
try as chiral building blocks, due to their rigid structures
and inherent stereochemical diversity.3–5 In particular,
C-aryl glycopyranosides with a double bond in the 2,3-
position (pseudoglycals) are highly useful synthetic
intermediates, since this unsaturation can be further func-
tionalized.6 C-Aryl pseudoglycals can undergo a reductive
ring opening reaction to provide enantiopure acyclic triols,
which may serve as useful intermediates for the synthesis of
biologically active compounds. Thus, in continuation of
our work on silane reductions,7,8 we became interested in
reductive ring opening of C-aryl pseudoglycals.

The commonly used methods for reductive ring opening
of cyclic ethers are hydrogenation under high pressure,9,10

dissolving metal reductions,11–15 scandium(III) triflate/tri-
ethylsilane16 and others.17,18 All these methods have their
own advantages as well as limitations depending on the
nature of the substrate and reaction conditions.19 There-
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fore, the development of mild and efficient methods for this
transformation is important. We report herein on a mild
method for the reductive ring opening of C-aryl pseudogly-
cals using titanium(IV) chloride/triethylsilane (Scheme 1).

Initially, we examined the ring opening of phenyl
pseudoglycal 1a, which was prepared from tri-O-acetyl-D-
glucal and phenyl boronic acid in the presence of palla-
dium(II) acetate,20,21 by employing various Lewis acids in
combination with triethylsilane. Table 1 shows the results
of this study for optimized conditions. Among the Lewis
acids screened, ZnCl2, MoCl5, B(C6F5)3, and TiCl4, only
titanium(IV) chloride provided the acyclic product in
20% yield (reaction profile was not clean, multiple spots
were observed by TLC). To optimize further the reaction
conditions with TiCl4, the same reaction was carried out
at �78 �C for 1.5 h, which afforded the desired product
R= H, Ac
R'= H, 4-MeO, 4-Me, 4-NHSO2Me, 4-Cl

Scheme 1. Reductive ring opening of C-aryl pseudoglycals.
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Table 1
Reactivity of various Lewis acids in reductive ring opening of phenyl
pseudoglycal 1a with Et3SiHa

Entry Lewis acid Conditions Time (h) Yieldb (%)

1 ZnCl2 (1 equiv) CH2Cl2/rt 24 0
2 MoCl5 (1 equiv) CH2Cl2/rt 24 0
3 B(C6F5)3 (1 equiv) CH2Cl2/rt 24 0
4 TiCl4 (1 equiv) CH2Cl2/rt 2.5 20
5 TiCl4 (2 equiv) CH2Cl2/�78 �C 1.5 80

a 3 equiv of Et3SiH was used.
b Isolated yield.

Table 2
Reductive ring opening of C-aryl pseudoglycals using TiCl4–Et3SiH

Entry C-Aryl pseudoglycal Time (h)
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a Isolated yield after column chromatography.
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in 80% yield (Table 1, entry 5). A combination of TiCl4
with reducing agents such as NaBH4 and polymethyl-
hydrosiloxane (PMHS) was not effective for this reaction.
It was found that the combination of 2 equiv of titanium
tetrachloride and 3 equiv of triethylsilane gave the best
results.

To determine the generality of the above reagent system,
several other C-aryl pseudoglycals were prepared and sub-
jected to the reductive ring opening reaction. Almost all
the substrates gave the corresponding acyclic product in
good yield and the results are displayed in Table 2. The
Product Yielda (%)
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acetylated pseudoglycals 1d and 1e underwent smooth ring
opening to give products 2d and 2e, respectively, (Table 2,
entries 4 and 5). The reaction of aryl substituted tetrahydro-
pyran 1f (without unsaturation in the ring) was also success-
ful (Table 2, entry 6). However, tert-butyldimethylsilyl
ethers were cleaved under the present reaction conditions
and afforded the acyclic product as triol 2a (Table 2, entry
7). The reaction of pseudoglycal 1h containing an elec-
tron-withdrawing group provided the triol 2g in lower yield
(Table 2, entry 8).22 Finally, attempts towards the reductive
ring opening of C-alkynyl pseudoglycal 1i were unsuccessful
(Table 2, entry 9). All the obtained products were fully char-
acterized from IR, 1H, 13C NMR, and HRMS spectral data.
The geometry of the alkene was confirmed as cis from
COSY spectra.

In summary, we report the reductive ring opening of C-
aryl pseudoglycals using triethylsilane in the presence of
titanium tetrachloride under mild reaction conditions.
The reaction proceeded smoothly to provide acyclic prod-
ucts having two asymmetric centers (hydroxyl groups)
and a cis-olefin functionality. These products could be
important intermediates in the synthesis of various biolog-
ically active compounds including sphingolipid analogues
and work in this direction is currently underway.

General experimental procedure for reductive ring opening

of C-aryl pseudoglycals: To a stirred solution of C-aryl
pseudoglycal (1 mmol) in anhydrous dichloromethane
(10 mL) were added triethylsilane (0.48 mL, 3 mmol) and
titanium tetrachloride (0.22 mL, 2 mmol) at �78 �C under
a nitrogen atmosphere. The resulting mixture was stirred at
the same temperature for a given time (see Table 2). After
completion of the reaction (monitored by TLC), the reac-
tion mixture was diluted with dichloromethane (10 mL)
and water (5 mL). After separating the dichloromethane
layer, the water layer was extracted with dichloromethane
(2 � 10 mL). The combined extract was washed with brine
(5 mL) and dried over Na2SO4. The solvent was removed
under reduced pressure and the crude was purified by
column chromatography over silica gel to give the corres-
ponding product.23
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